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I. Code Description

A 3D Discontinuous Galerkin (DG) finite element method1 is used to discretize the compressible Navier-
Stokes (CNS) equations. The solver can handle hybrid mixed element meshes (tetrahedra,pyramids,prisms,
and hexahedra), curved elements, and incorporates both p-enrichment and h-refinement capabilities using
non-conforming elements (hanging nodes). Additional equations that can be solved include a PDE-based
artificial viscosity equation2–4 and the Spalart-Allmaras turbulence model (negative-SA variant).5 The
implicit solver uses a Newton-Raphson method to solve the non-linear set of equations. These equations
are linearized to obtain the full Jacobian. The linear system is solved using a flexible-GMRES6 (fGMRES)
method. To further improve convergence of fGMRES a preconditioner can be applied to the system of
equations. Preconditioners that have been implemented include Jacobi relaxation, Gauss-Seidel relaxation,
line implicit Jacobi, and ILU(0). The solver is parallelized using MPI.

II. Case Summary

Steady state solutions of turbulent flow. In these cases the negative-Spalart-Allmaras5 turbulence model
is used. The non-linear residual is driven down 8 orders of magnitude using the implicit Newton-Rhapson
solver.

A. Hardware

Simulations were performed on the NCAR-Wyoming supercomputer (NWSC) Yellowstone which is a 1.5
Petaflops high performance IBM iDataPlex architecture featuring 72,576 Intel Sandybridge cores (2.6 GHz
Intel E5-2670 processors configured in dual socket nodes) and 144.6 TB of memory. The Taubench for this
machine is 8.4 seconds.

III. Meshes

The provided curved hexahedral grids will be used. Although this grid is built using a surface defined
with b-splines it is easy to show that the cubic elements to not preserve curvature, which can lead to jumps
in pressure. This is most likely due to the grid points not aligning with the control points in the splines.

IV. Results

Solutions to flow over the DPW3 wing are discussed in this section. Due to the issues with the curvature
of the grid no attempt was made to refine or adapt the grid. Simulations were carried out varying the
polynomial degree and the artificial viscosity parameter κ, where larger κ causes larger artificial viscosity.
The results for drag and lift coefficient are shown in Table 2. Based on the third drag prediction workshop:
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the range of acceptable drag coefficient is 0.0185 ≤ CD ≤ 0.0206 and lift coefficient is 0.44 ≤ CL ≤ 0.48.
Cases 1 and 2 (p = 1, κ = 2, 1.75) have too much viscosity and give poor predictions for lift and drag. Case
3 (p = 1, κ = 1.5) has just enough viscosity for stabilization and gives reasonable predictions for lift and
improved drag. Case 4 (p = 2, κ = 2) again has too much viscosity and gives poor results but are better than
Case 1 due to the increase in polynomial degree. Cases 5-7 all give lift and drag within acceptable ranges.

Figure 1 shows surface contours of pressure for Cases 2, 3, 5, and 7. The only solutions to have smooth
contours of pressure are Case 1 (not shown in figure) and Case 2. These also give the worst predictions for
lift and drag. The higher resolution and smaller values of artificial viscosity lead to non-smooth pressure
contours but give better lift and drag predictions. The jumps in pressure are believed to be caused from
the jumps in curvature between elements. The element mapping is a cubic p = 3 polynomial representation
of a surface made of cubic B-splines. However, the elements do not align with the control points for the
splines. Therefore this mesh is only piecewise continuous and both the slopes and curvature are discontinuous
between elements. Figure 2 shows surface contours of artificial viscosity for Cases 2, 3, 5, and 7. Cases 2
and 3 have a lot of artificial viscosity within the domain due to under resolution of the solution causing large
jumps in pressure. Cases 5 and 7 however show artificial viscosity primarily on the wing surface, most likely
due to the grid. Figure 3 shows surface contours of eddy viscosity for Cases 2, 3, 5, and 7. Case 2 is over
predicting eddy viscosity and has jumps within the wake. Case 3 has a more accurate eddy viscosity with
smaller jumps. Cases 5 and 7 show accurate eddy viscosity and smoother solutions.

It is shown in these results that too much artificial viscosity may give smooth solutions but can lead to
poor predictions for lift and drag. Also, discontinuities of curvature on the wing surface can lead to large
pressure fluctuations. In order to get accurate solutions for the DPW3 wing a new high order grid is needed
and with enough resolution solutions without artificial viscosity may be obtained.

Table 1. Drag and lift coefficients for varying polynomial degree p and artificial viscosity parameter κ

case p κ CD CL

1 1 2 0.05271 0.1056

2 1 1.75 0.03747 0.0974

3 1 1.5 0.02332 0.4604

4 2 2 0.02247 0.3392

5 2 1.75 0.01961 0.4509

6 2 1.5 0.01955 0.4780

7 3 1.75 0.01932 0.4507
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Figure 1. Contours of pressure for Case 2: p = 1, κ = 1.75 (top left), Case 3: p = 1, κ = 1.5 (top right), Case 5:
p = 2, κ = 1.75 (bottom left), Case 7: p = 3, κ = 1.75 (bottom right)

Figure 2. Contours of artificial viscosity for Case 2: p = 1, κ = 1.75 (top left), Case 3: p = 1, κ = 1.5 (top right),
Case 5: p = 2, κ = 1.75 (bottom left), Case 7: p = 3, κ = 1.75 (bottom right)
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Figure 3. Contours of eddy viscosity for Case 2: p = 1, κ = 1.75 (top left), Case 3: p = 1, κ = 1.5 (top right),
Case 5: p = 2, κ = 1.75 (bottom left), Case 7: p = 3, κ = 1.75 (bottom right)
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